Engineering
Engineering is the creative application of science, mathematical methods, and empirical evidence to the innovation, design, construction, operation and maintenance of structures, machines, materials, devices, systems, processes, and organizations. The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application. See glossary of engineering.
Information
Information is any entity or form that provides the answer to a question of some kind or resolves uncertainty. It is thus related to data and knowledge, as data represents values attributed to parameters, and knowledge signifies understanding of real things or abstract concepts. As it regards data, the information's existence is not necessarily coupled to an observer (it exists beyond an event horizon, for example), while in the case of knowledge, the information requires a cognitive observer.
Systems Engineering
Systems engineering is an interdisciplinary field of engineering and engineering management that focuses on how to design and manage complex systems over their life cycles. At its core, systems engineering utilizes systems thinking principles to organize this body of knowledge. Issues such as requirements engineering, reliability, logistics, coordination of different teams, testing and evaluation, maintainability and many other disciplines necessary for successful system development, design, implementation, and ultimate decommission become more difficult when dealing with large or complex projects. Systems engineering deals with work-processes, optimization methods, and risk management tools in such projects. It overlaps technical and human-centered disciplines such as industrial engineering, mechanical engineering, manufacturing engineering, control engineering, software engineering, electrical engineering, cybernetics, organizational studies and project management. Systems engineering ensures that all likely aspects of a project or system are considered, and integrated into a whole.
Systems Engineering
The Systems Engineering method recognizes each system is an integrated whole even though composed of devices, specialized structures and sub-functions. It is further recognized that any system has a number of objectives and that the balance between them may differ widely from system to system. The methods seek to optimize the overall system function according to the weighted objectives and to achieve maximum capability of its parts.
J.A. Morton (1959) "Integrating of Systems Engineering with Component Development."Electrical Manufacturing, August 1959; As cited in: Allen B. Rosenstein (1965) "Systems engineering and Modern Engineering Design"
Information
It used to be said that information is power. As w:Arthur Sulzberger Jr., chairman of the board of the New York Times Co., rightly says, "Information is now ubiquitous. Power is understanding."
Martin Kaiser, in INFORMATION: The news will be exciting and so will the medium Milwaukee Journal Sentinel, 2 January 2000.
Engineering
A key characteristic of the engineering culture is that the individual engineer’s commitment is to technical challenge rather than to a given company. There is no intrinsic loyalty to an employer as such. An employer is good only for providing the sandbox in which to play. If there is no challenge or if resources fail to be provided, the engineer will seek employment elsewhere. In the engineering culture, people, organization, and bureaucracy are constraints to be overcome. In the ideal organization everything is automated so that people cannot screw it up. There is a joke that says it all. A plant is being managed by one man and one dog. It is the job of the man to feed the dog, and it is the job of the dog to keep the man from touching the equipment. Or, as two Boeing engineers were overheard to say during a landing at Seattle, “What a waste it is to have those people in the cockpit when the plane could land itself perfectly well.” Just as there is no loyalty to an employer, there is no loyalty to the customer. As we will see later, if trade-offs had to be made between building the next generation of “fun” computers and meeting the needs of “dumb” customers who wanted turnkey products, the engineers at DEC always opted for technological advancement and paid attention only to those customers who provided a technical challenge.
Edgar H. Schein (2010). Dec Is Dead, Long Live Dec: The Lasting Legacy of Digital Equiment Corporation. p. 60